Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Radiol ; 34(3): 2072-2083, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37658890

RESUMO

OBJECTIVES: To develop a deep-learning method for whole-body fetal segmentation based on MRI; to assess the method's repeatability, reproducibility, and accuracy; to create an MRI-based normal fetal weight growth chart; and to assess the sensitivity to detect fetuses with growth restriction (FGR). METHODS: Retrospective data of 348 fetuses with gestational age (GA) of 19-39 weeks were included: 249 normal appropriate for GA (AGA), 19 FGR, and 80 Other (having various imaging abnormalities). A fetal whole-body segmentation model with a quality estimation module was developed and evaluated in 169 cases. The method was evaluated for its repeatability (repeated scans within the same scanner, n = 22), reproducibility (different scanners, n = 6), and accuracy (compared with birth weight, n = 7). A normal MRI-based growth chart was derived. RESULTS: The method achieved a Dice = 0.973, absolute volume difference ratio (VDR) = 1.8% and VDR mean difference = 0.75% ([Formula: see text]: - 3.95%, 5.46), and high agreement with the gold standard. The method achieved a repeatability coefficient = 4.01%, ICC = 0.99, high reproducibility with a mean difference = 2.21% ([Formula: see text]: - 1.92%, 6.35%), and high accuracy with a mean difference between estimated fetal weight (EFW) and birth weight of - 0.39% ([Formula: see text]: - 8.23%, 7.45%). A normal growth chart (n = 246) was consistent with four ultrasound charts. EFW based on MRI correctly predicted birth-weight percentiles for all 18 fetuses ≤ 10thpercentile and for 14 out of 17 FGR fetuses below the 3rd percentile. Six fetuses referred to MRI as AGA were found to be < 3rd percentile. CONCLUSIONS: The proposed method for automatic MRI-based EFW demonstrated high performance and sensitivity to identify FGR fetuses. CLINICAL RELEVANCE STATEMENT: Results from this study support the use of the automatic fetal weight estimation method based on MRI for the assessment of fetal development and to detect fetuses at risk for growth restriction. KEY POINTS: • An AI-based segmentation method with a quality assessment module for fetal weight estimation based on MRI was developed, achieving high repeatability, reproducibility, and accuracy. • An MRI-based fetal weight growth chart constructed from a large cohort of normal and appropriate gestational-age fetuses is proposed. • The method showed a high sensitivity for the diagnosis of small fetuses suspected of growth restriction.


Assuntos
Aprendizado Profundo , Peso Fetal , Recém-Nascido , Feminino , Gravidez , Humanos , Lactente , Peso ao Nascer , Recém-Nascido Pequeno para a Idade Gestacional , Estudos Retrospectivos , Reprodutibilidade dos Testes , Ultrassonografia Pré-Natal/métodos , Retardo do Crescimento Fetal/diagnóstico por imagem , Feto/diagnóstico por imagem , Idade Gestacional , Imageamento por Ressonância Magnética
2.
AJNR Am J Neuroradiol ; 44(12): 1432-1439, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38050002

RESUMO

BACKGROUND AND PURPOSE: The current imaging assessment of fetal brain gyrification is performed qualitatively and subjectively using sonography and MR imaging. A few previous studies have suggested methods for quantification of fetal gyrification based on 3D reconstructed MR imaging, which requires unique data and is time-consuming. In this study, we aimed to develop an automatic pipeline for gyrification assessment based on routinely acquired fetal 2D MR imaging data, to quantify normal changes with gestation, and to measure differences in fetuses with lissencephaly and polymicrogyria compared with controls. MATERIALS AND METHODS: We included coronal T2-weighted MR imaging data of 162 fetuses retrospectively collected from 2 clinical sites: 134 controls, 12 with lissencephaly, 13 with polymicrogyria, and 3 with suspected lissencephaly based on sonography, yet with normal MR imaging diagnoses. Following brain segmentation, 5 gyrification parameters were calculated separately for each hemisphere on the basis of the area and ratio between the contours of the cerebrum and its convex hull. Seven machine learning classifiers were evaluated to differentiate control fetuses and fetuses with lissencephaly or polymicrogyria. RESULTS: In control fetuses, all parameters changed significantly with gestational age (P < .05). Compared with controls, fetuses with lissencephaly showed significant reductions in all gyrification parameters (P ≤ .02). Similarly, significant reductions were detected for fetuses with polymicrogyria in several parameters (P ≤ .001). The 3 suspected fetuses showed normal gyrification values, supporting the MR imaging diagnosis. An XGBoost-linear algorithm achieved the best results for classification between fetuses with lissencephaly and control fetuses (n = 32), with an area under the curve of 0.90 and a recall of 0.83. Similarly, a random forest classifier showed the best performance for classification of fetuses with polymicrogyria and control fetuses (n = 33), with an area under the curve of 0.84 and a recall of 0.62. CONCLUSIONS: This study presents a pipeline for automatic quantification of fetal brain gyrification and provides normal developmental curves from a large cohort. Our method significantly differentiated fetuses with lissencephaly and polymicrogyria, demonstrating lower gyrification values. The method can aid radiologic assessment, highlight fetuses at risk, and may improve early identification of fetuses with cortical malformations.


Assuntos
Lisencefalia , Polimicrogiria , Feminino , Humanos , Polimicrogiria/diagnóstico por imagem , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Lisencefalia/diagnóstico por imagem , Feto/diagnóstico por imagem
3.
Eur Radiol ; 33(12): 9194-9202, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37389606

RESUMO

OBJECTIVES: Fat-water MRI can be used to quantify tissues' lipid content. We aimed to quantify fetal third trimester normal whole-body subcutaneous lipid deposition and explore differences between appropriate for gestational age (AGA), fetal growth restriction (FGR), and small for gestational age fetuses (SGAs). METHODS: We prospectively recruited women with FGR and SGA-complicated pregnancies and retrospectively recruited the AGA cohort (sonographic estimated fetal weight [EFW] ≥ 10th centile). FGR was defined using the accepted Delphi criteria, and fetuses with an EFW < 10th centile that did not meet the Delphi criteria were defined as SGA. Fat-water and anatomical images were acquired in 3 T MRI scanners. The entire fetal subcutaneous fat was semi-automatically segmented. Three adiposity parameters were calculated: fat signal fraction (FSF) and two novel parameters, i.e., fat-to-body volume ratio (FBVR) and estimated total lipid content (ETLC = FSF*FBVR). Normal lipid deposition with gestation and differences between groups were assessed. RESULTS: Thirty-seven AGA, 18 FGR, and 9 SGA pregnancies were included. All three adiposity parameters increased between 30 and 39 weeks (p < 0.001). All three adiposity parameters were significantly lower in FGR compared with AGA (p ≤ 0.001). Only ETLC and FSF were significantly lower in SGA compared with AGA using regression analysis (p = 0.018-0.036, respectively). Compared with SGA, FGR had a significantly lower FBVR (p = 0.011) with no significant differences in FSF and ETLC (p ≥ 0.053). CONCLUSIONS: Whole-body subcutaneous lipid accretion increased throughout the third trimester. Reduced lipid deposition is predominant in FGR and may be used to differentiate FGR from SGA, assess FGR severity, and study other malnourishment pathologies. CLINICAL RELEVANCE STATEMENT: Fetuses with growth restriction have reduced lipid deposition than appropriately developing fetuses measured using MRI. Reduced fat accretion is linked with worse outcomes and may be used for growth restriction risk stratification. KEY POINTS: • Fat-water MRI can be used to assess the fetal nutritional status quantitatively. • Lipid deposition increased throughout the third trimester in AGA fetuses. • FGR and SGA have reduced lipid deposition compared with AGA fetuses, more predominant in FGR.


Assuntos
Retardo do Crescimento Fetal , Recém-Nascido Pequeno para a Idade Gestacional , Gravidez , Recém-Nascido , Feminino , Humanos , Estudos Retrospectivos , Retardo do Crescimento Fetal/diagnóstico por imagem , Feto/diagnóstico por imagem , Idade Gestacional , Tecido Adiposo , Imageamento por Ressonância Magnética , Água , Lipídeos , Ultrassonografia Pré-Natal/métodos
4.
Eur Radiol ; 33(1): 54-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35821428

RESUMO

OBJECTIVES: To differentiate hypo-/hypertelorism (abnormal) from normal fetuses using automatic biometric measurements and machine learning (ML) classification based on MRI. METHODS: MRI data of normal (n = 244) and abnormal (n = 52) fetuses of 22-40 weeks' gestational age (GA), scanned between March 2008 and June 2020 on 1.5/3T systems with various T2-weighted sequences and image resolutions, were included. A fully automatic method including deep learning and geometric algorithms was developed to measure the binocular (BOD), inter-ocular (IOD), ocular (OD) diameters, and ocular volume (OV). Two new parameters, BOD-ratio and IOD-ratio, were defined as the ratio between BOD/IOD relative to the sum of both globes' OD, respectively. Eight ML classifiers were evaluated to detect abnormalities using measured and computed parameters. RESULTS: The automatic method yielded a mean difference of BOD = 0.70 mm, IOD = 0.81 mm, OD = 1.00 mm, and a 3D-Dice score of OV = 93.7%. In normal fetuses, all four measurements increased with GA. Constant values were detected for BOD-ratio = 1.56 ± 0.05 and IOD-ratio = 0.60 ± 0.05 across all GA and when calculated from previously published reference data of both MRI and ultrasound. A random forest classifier yielded the best results on an independent test set (n = 58): AUC-ROC = 0.941 and F1-Score = 0.711 in comparison to AUC-ROC = 0.650 and F1-Score = 0.385 achieved based on the accepted criteria that define hypo/hypertelorism based on IOD (< 5th or > 95th percentiles). Using the explainable ML method, the two computed ratios were found as the most contributing parameters. CONCLUSIONS: The developed fully automatic method demonstrates high performance on varied clinical imaging data. The new BOD and IOD ratios and ML multi-parametric classifier are suggested to improve the differentiation of hypo-/hypertelorism from normal fetuses. KEY POINTS: • A fully automatic method for computing fetal ocular biometry from MRI is proposed, achieving high performance, comparable to that of an expert fetal neuro-radiologist. • Two new parameters, IOD-ratio and BOD-ratio, are proposed for routine clinical use in ultrasound and MRI. These two ratios are constant across gestational age in normal fetuses, consistent across studies, and differentiate between fetuses with and without hypo/hypertelorism. • Multi-parametric machine learning classification based on automatic measurements and the two new ratios improves the identification of fetal ocular anomalies beyond the accepted criteria (<5th or >95th IOD percentiles).


Assuntos
Hipertelorismo , Gravidez , Humanos , Feminino , Biometria/métodos , Imageamento por Ressonância Magnética/métodos , Feto/diagnóstico por imagem , Aprendizado de Máquina , Ultrassonografia Pré-Natal/métodos
5.
J Magn Reson Imaging ; 56(1): 134-144, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34799945

RESUMO

BACKGROUND: Advanced magnetic resonance imaging (MRI) methods are increasingly being used to assess the human placenta. Yet, the structure-function interplay in normal placentas and their associations with pregnancy risks are not fully understood. PURPOSE: To characterize the normal human placental structure (volume and umbilical cord centricity index (CI)) and function (perfusion) ex-vivo using MRI, to assess their association with birth weight (BW), and identify imaging-markers for placentas at risk for dysfunction. STUDY TYPE: Prospective. POPULATION: Twenty normal term ex-vivo placentas. FIELD STRENGTH/SEQUENCE: 3 T/ T1 and T2 weighted (T1 W, T2 W) turbo spin-echo, three-dimensional susceptibility-weighted image, and time-resolved angiography with interleaved stochastic trajectories (TWIST), during passage of a contrast agent using MRI compatible perfusion system that mimics placental flow. ASSESSMENT: Placental volume and CI were manually extracted from the T1 W images by a fetal-placental MRI scientist (D.L., 7 years of experience). Perfusion maps including bolus arrival-time and full-width at half maximum were calculated from the TWIST data. Mean values, entropy, and asymmetries were calculated from each perfusion map, relating to both the whole placenta and volumes of interest (VOIs) within the umbilical cord and its daughter blood vessels. STATISTICAL TESTS: Pearson correlations with correction for multiple comparisons using false discovery rate were performed between structural and functional parameters, and with BW, with P < 0.05 considered significant. RESULTS: All placentas were successfully perfused and scanned. Significant correlations were found between whole placenta and VOIs perfusion parameters (mean R = 0.76 ± 0.06, range = 0.67-0.89), which were also significantly correlated with CI (mean R = 0.72 ± 0.05, range = 0.65-0.79). BW was correlated with placental volume (R = 0.62), but not with CI (P = 0.40). BW was also correlated with local perfusion asymmetry (R = -0.71). DATA CONCLUSION: Results demonstrate a gradient of placental function, associated with CI and suggest several ex-vivo imaging-markers that might indicate an increased risk for placental dysfunction. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Imageamento por Ressonância Magnética , Placenta , Peso ao Nascer , Meios de Contraste , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Placenta/diagnóstico por imagem , Placenta/patologia , Gravidez , Estudos Prospectivos
6.
Int J Comput Assist Radiol Surg ; 16(9): 1481-1492, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34185253

RESUMO

PURPOSE: Timely, accurate and reliable assessment of fetal brain development is essential to reduce short and long-term risks to fetus and mother. Fetal MRI is increasingly used for fetal brain assessment. Three key biometric linear measurements important for fetal brain evaluation are cerebral biparietal diameter (CBD), bone biparietal diameter (BBD), and trans-cerebellum diameter (TCD), obtained manually by expert radiologists on reference slices, which is time consuming and prone to human error. The aim of this study was to develop a fully automatic method computing the CBD, BBD and TCD measurements from fetal brain MRI. METHODS: The input is fetal brain MRI volumes which may include the fetal body and the mother's abdomen. The outputs are the measurement values and reference slices on which the measurements were computed. The method, which follows the manual measurements principle, consists of five stages: (1) computation of a region of interest that includes the fetal brain with an anisotropic 3D U-Net classifier; (2) reference slice selection with a convolutional neural network; (3) slice-wise fetal brain structures segmentation with a multi-class U-Net classifier; (4) computation of the fetal brain midsagittal line and fetal brain orientation, and; (5) computation of the measurements. RESULTS: Experimental results on 214 volumes for CBD, BBD and TCD measurements yielded a mean [Formula: see text] difference of 1.55 mm, 1.45 mm and 1.23 mm, respectively, and a Bland-Altman 95% confidence interval ([Formula: see text] of 3.92 mm, 3.98 mm and 2.25 mm, respectively. These results are similar to the manual inter-observer variability, and are consistent across gestational ages and brain conditions. CONCLUSIONS: The proposed automatic method for computing biometric linear measurements of the fetal brain from MR imaging achieves human-level performance. It has the potential of being a useful method for the assessment of fetal brain biometry in normal and pathological cases, and of improving routine clinical practice.


Assuntos
Encefalopatias , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...